Categorical Models for Intuitionistic and Linear Type Theory

نویسندگان

  • Maria Emilia Maietti
  • Valeria de Paiva
  • Eike Ritter
چکیده

This paper describes the categorical semantics of a system of mixed intuitionistic and linear type theory (ILT). ILT was proposed by G. Plotkin and also independently by P. Wadler. The logic associated with ILT is obtained as a combination of intuitionistic logic with intuitionistic linear logic, and can be embedded in Barber and Plotkin's Dual Intuitionistic Linear Logic (DILL). However, unlike DILL, the logic for ILT lacks an explicit modality ! that translates intuitionistic proofs into linear ones. So while the semantics of DILL can be given in terms of monoidal adjunctions between symmetric monoidal closed categories and cartesian closed categories, the semantics of ILT is better presented via brations. These interpret double contexts, which cannot be reduced to linear ones. In order to interpret the intuitionistic and linear identity axioms acting on the same type we need brations satisfying the comprehension axiom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Categorical Semantics for Linear Logical Frameworks

A type theory is presented that combines (intuitionistic) linear types with type dependency, thus properly generalising both intuitionistic dependent type theory and full linear logic. A syntax and complete categorical semantics are developed, the latter in terms of (strict) indexed symmetric monoidal categories with comprehension. Various optional type formers are treated in a modular way. In ...

متن کامل

Kripke Resource Models of a Dependently - typed , Bunched � - calculus

The £-calculus is a dependent type theory with both linear and intuitionistic dependent function spaces. It can be seen to arise in two ways. Firstly, in logical frameworks, where it is the language of the RLF logical framework and can uniformly represent linear and other relevant logics. Secondly, it is a presentation of the proof-objects of a structural variation, with Dereliction, of a fragm...

متن کامل

Kripke resource models of a dependently - typed , bunched λ - calculus ( extended abstract )

The λΛ-calculus is a dependent type theory with both linear and intuitionistic dependent function spaces. It can be seen to arise in two ways. Firstly, in logical frameworks, where it is the language of the RLF logical framework and can uniformly represent linear and other relevant logics. Secondly, it is a presentation of the proof-objects of BI, the logic of bunched implications. BI is a logi...

متن کامل

Dual Intuitionistic Linear Logic

We present a new intuitionistic linear logic, Dual Intuitionistic Linear Logic, designed to reflect the motivation of exponentials as translations of intuitionistic types, and provide it with a term calculus, proving associated standard type-theoretic results. We give a sound and complete categorical semantics for the type-system, and consider the relationship of the new type-theory to the more...

متن کامل

Category Theory for Linear Logicians

This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categories and their relation to intuitionistic logic is followed by a consideration of symmetric monoida...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000